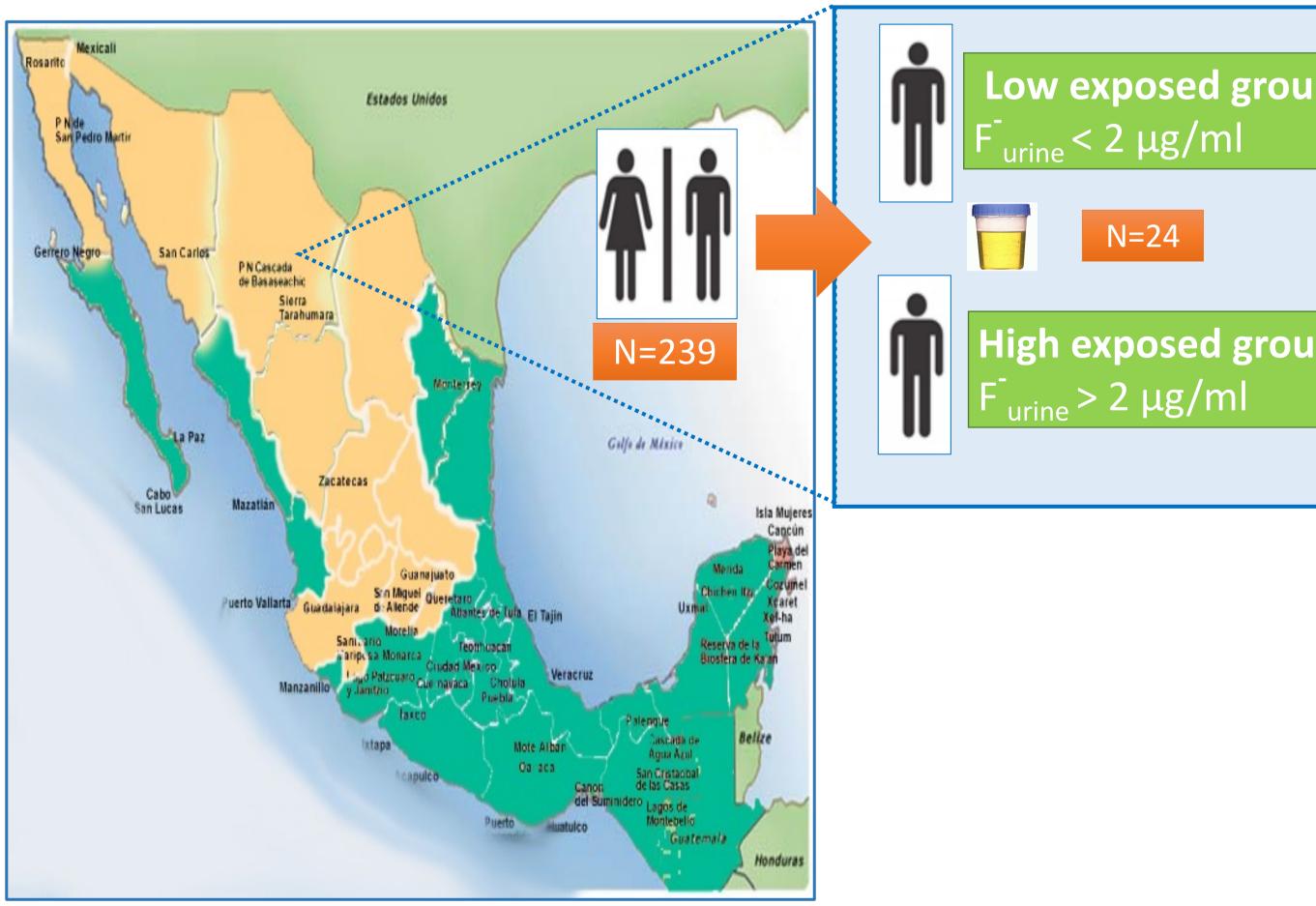


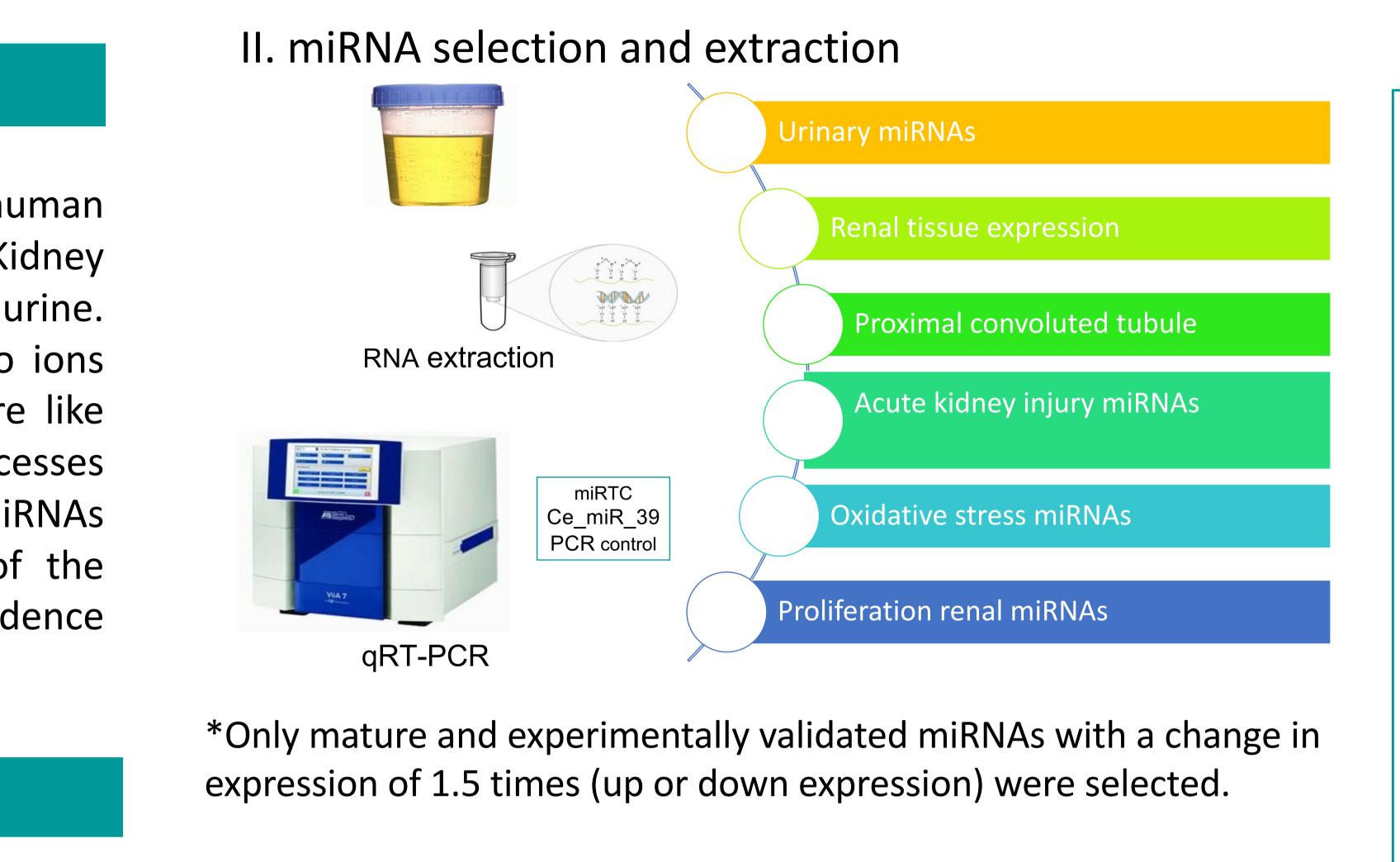
Urinary microRNAs response in adults exposed chronically to fluoride in drinking water

Soledad Solis-Angeles¹, Carmen González-Horta², Mónica I. Jimenez-Córdova¹, Efraín E. Villarreal-Vega², Guadalupe Aguilar-Madrid³, Luz M. Del Razo¹, Olivier Barbier¹ ¹Toxicología, Cinvestav-IPN. México D.F., México. ²Universidad Autónoma de Chihuahua México. ³Salud en el Trabajo, Instituto Mexicano del Seguro Social, México D.F., México

Introduction


Fluoride in drinking water exceeds safe limits for human consumption in various regions of the world (> 1.5 mg/l). Kidney is the major excretory organ for fluoride, through the urine. Proximal convoluted tubule is main damage area due to ions absorption. different process occurs by fluoride exposure like EMT, hypoxia, apoptosis and inflammation; all these processes are accompanied by dysregulation in gene expression. miRNAs are actively involved in the physiology maintenance of the kidney during life, so alterations in miRNAs profile can evidence damage of the cells.

Objective


In this study, we aimed to identify urinary miRNAs associated with early kidney damage by fluoride exposure. To evaluate in a human population exposure to fluoride in drinking water

Methods

I. Study Design

The study was approved by the Ethics Committee of the CINVESTAV (COBISH) and the acceptance of each of the participants, by signing a consent form.

Results

I. Population characteristics

Table 1. Ge	ener	al characteristic exposed to fluc	-	population	
	n	mean ± SD	median	Min- Max	p value ²
Fluoride urine ¹ (µg/ml)					
Low Exposed High Exposed		1.34 ± 0.52 4.84 ± 2.83	1.36 4.04	0.47 - 1.96 2.77 - 14.56	0.000
Age (years)					
Low Exposed High Exposed		47.41 ± 9.89 44.12 ± 12.00	49 44.5	24 - 60 21 - 61	0.305
Glycemia (mg/dl)					
Low Exposed High Exposed		105.66 ± 22.81 99 ± 28.08	98.5 93	75 - 173 54 - 208	0.371
GFR (ml/min/1.73m ²)					
Low Exposed High Exposed		64.05 ± 6.76 61.09 ± 8.22	64.21 62.43	51.81 - 75. 32 48.23 - 76.42	0.179
Cystatin C ¹ (µg/ml)					
•		176.66 ± 113.20 276.85 ± 170.65			0.020
KIM-1 (ng/ml)					
Low Exposed High Exposed		0.87 ± 0.56 1.11 ± 0.81	0.70 0.73	0.22 - 0.2.3 0.78 - 2.65	0.261
GFR: Glomerular filtration SD: standard deviation, References:			urine de	nsity, ² T-studen	t p <0.0

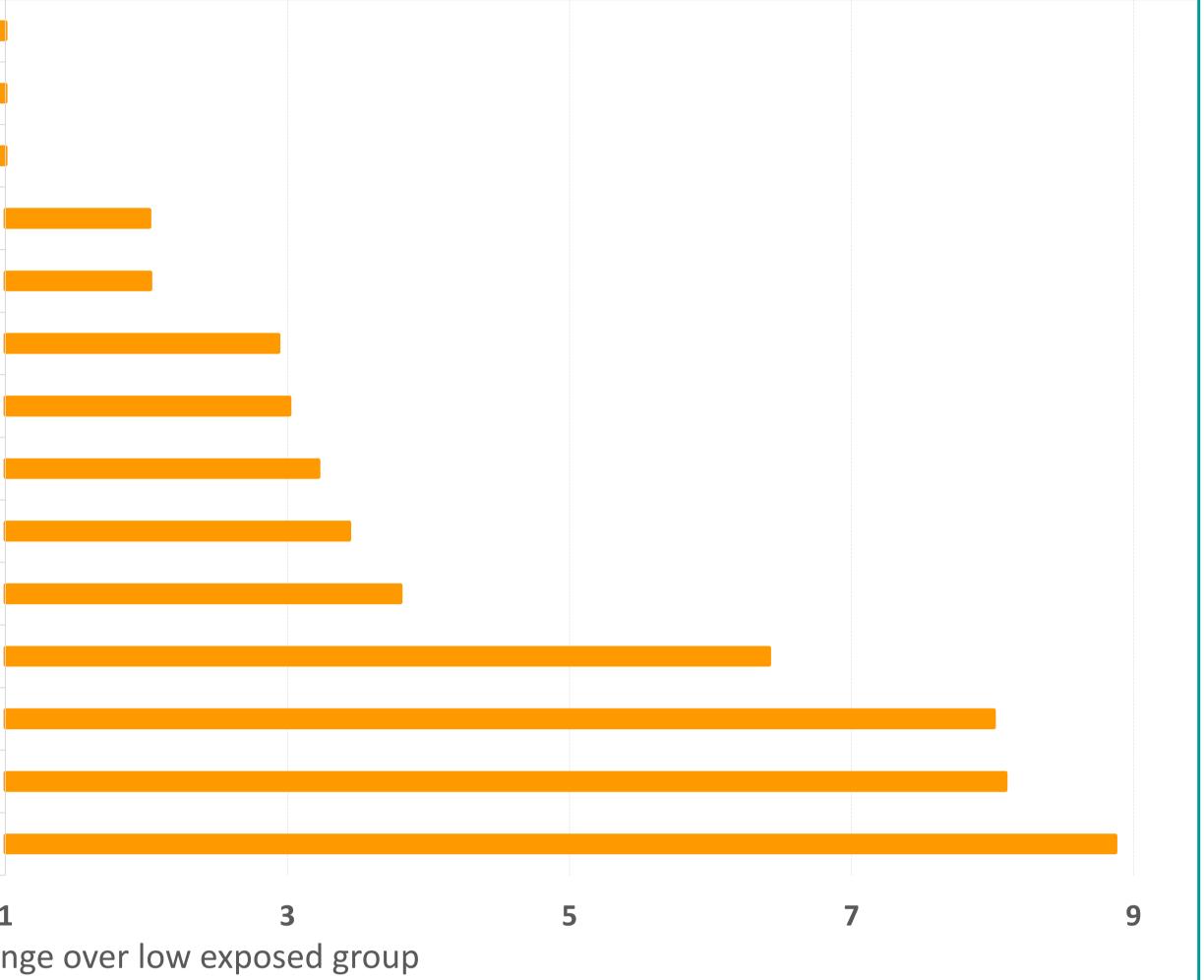
Chung 2013 (DOI: 10.2147/IJNRD.S37885), Weber 2010 (DOI: 10.1373/clinchem.2010.147405), Kito 2015 (DOI:10.1155/2015/465479), Ramachdran 2013 (DOI: 10.1373/clinchem.2013.210245), Aguado-Fraile 2013 (DOI: 10.3265/Nefrologia.pre2013.Aug.12198), Hagiwara 2013 (DOI: /10.1155/2013/173783)

II. Panel miRNAs modified by chronic fluoride exposure

	hsa-miR-1	<mark>94-5</mark>
	hsa-miR-	<mark>21-5</mark>
	hsa-miR-20	0b-3
	hsa-miR-4	23-3
	hsa-miR-2	9c-3
	hsa-miR-	93-5
	hsa-miR-1	8a-5
	hsa-miR-46	40-5
	hsa-mi	R-10
	hsa-miR-3	ا77-3
	hsa-miR-	28-5
	hsa-miR-14	6a-5
	hsa-miR-1	22-5
	hsa-miR-1	41-3
-3	-1	Fold

Figure1. A panel of the top 19 urinary miRNAs modified by fluoride exposure (melting curve >30 Ct). Data were obtained from two group samples (n=4) Higher exposure group (4.23 ±2.68 μ g/ml F⁻_{urine}) and low exposure group (1.05 ±0.04 μ g/ml F⁻_{urine}), both groups with a mean age of 47.75 ± 6.67 years. SD <1.5 fold, t-student (*p*<0.05).

Table 2. miRNAs valídate targets					
miRNA	Validated target genes ¹	Associated Process			
hsa-miR-194-5p	GIGYF1 CDH2 IGF1R FZD6	cell adhesion, focal adhesion, adherent junctions, cell carcinoma			
hsa-miR-21-5p	PTEN PDCD4 RPS7 RECK BCL2 TPM1 SERPINB5	apoptosis, focal adhesion, p53 signaling pathway			
hsa-miR-200b-3p	ZEB1 ZEB2 ANKRD33B CREB1 RND3	oxidative stress induced gene expression via Nrf2, focal adhesion			
hsa-miR-423-3p	VEGFA PTMA PABPC3 CDKN1A	VEGF signaling pathway, focal adhesion, renal cell carcinoma,			
hsa-miR-29c-3p	MCL1 CTC1 COL4A1 REST TDG DNMT3A	focal adhesion, ECM receptor interaction			
hsa-miR-93-5p	FBXL5 KPNA2 CDKN1A E2F1 LAPTM4A	cell cylce			
hsa-miR-18a-5p	ATM GIGYF1 HIF1A CREBL2 ESR1 CTGF	mTOR and p53 signaling pathway, renal cell carcinoma			
hsa-miR-4640-5p	ARL5C ABT1 EDEM3 E2F7	alternative splicing, coiled coil			
hsa-miR-107	CDK6 PLEKHA1 DICER1 AXIN STK38 FERMT2	cell cicle, angiogenesis, actin cytoskeleton organization			
hsa-miR-377-3p	EID1 FAM180B EPHB3 SOD1 ARHGAP12	oxidative stress, GTPase activation			
hsa-miR-28-5p	SMYD1 TMED4 E2F6 MAPK1	cell cycle			
hsa-miR-146a-5p	IRAK1 TRAF6 EGFR SMAD4 NFKB1	ATP binding, coiled coil, inflamatory response, MAPK signaling			
hsa-miR-122-5p	OSBPL10 PIGO ADAM17 CCNG1 SLC7A1 CLIC4	chloride intracellular channel, cyclin G1 regulation			
hsa-miR-141-3p	ZEB1 ZEB2 BAP1 YRDC ARL5B	GTP binding, focal adhesion			
¹ miRTarBase 2016 (Chou 2016), Validated criteria: reporter assay, western blot, qPCR, Next Generation Sequence (NGS).					


Conclusion

RNA extraction from frozen urine was successful, despite the small amount of nucleic acids reported from the literature (<100 ng /ml). We extracted a mean of 12ng/ml for profile of miRNAs expression. Our preliminary results show that chronic exposure to fluoride in drinking water modify expression of some miRNAs, which could be useful as biomarkers for fluoride exposure and early kidney damage.

Partially supported by Thematic Network Collaborative, PRODEP-SEP

ABSTRAC ID 3130 POSTER BOARD P338

